ME 3823 (2018S) MACHINE ELEMENTS DESIGN

POWER TRANSMISSION DESIGN PROJECT

NAME	UTSA abc123
Joel Gomez	niw265
Emiliano Rodriguez	pyn190
Vincent Perez	jaw429

GROUP MEMBER

1. Design Requirements

Design a two-stage speed reducer that will take 62 hp of power from the shaft of an electric motor rotating at 1200 rpm and deliver it to a machine that is to operate at approximately at 155 rpm. An overall reliability of 95 % and a design life of 20,000 h are desired. A design factor 1.5 is used.

Table 1. Gear Ratio and Torques.

Gear Ratio (e):	0.128
Torque on input shaft (lbf-ft):	1705
Torque on output shaft (lbf-ft):	13367
Torque on intermediate shaft (lbf-ft):	4774

2. Gear Design

Parameters	Gear 2	Gear 3	Gear 4	Gear 5
W ^t (lbf)	1302.5	1302.5	3647.1	3647.1
W ^r (lbf)	474.1	474.1	1327.4	1327.4
Р	3	3	3	3
d (in)	5	14	5	14
F (in)	3	3	3	3
σ _c (ksi)	81.6	81.6	128.5	128.5
σ _t (ksi)	8.92	5.87	22.1	14.6
Material type	Steel Grade 1 Flame Induction Hardened	Steel Grade 1 Flame Induction Hardened	Steel Grade 2 Carburized and Hardened	Steel Grade 2 Carburized and Hardened
S _c (ksi)	170	170	225	225
S _t (ksi)	22	22	65	65
n _c	2.12	2.12	1.78	1.78
n _t	2.51	3.81	2.98	4.54

 Table 2. Gear Specifications

[W^t: tangential force; W^r: radical force; P: diametral pitch; d: pitch diameter; F: face width; σ_c : contact stress; σ_t : bending stress; S_c: allowable contact stress number; S_t: allowable bending stress number; n_c: safety factor for wear; n_t: safety factor for bending.] <u>Part Vender Information</u>

Gear t	# # of Teeth	Model #	Bore (in)
2	15	F 315A	1.313
3	42	F 342	1,25
4	15	F 315 A	1 313
<u>Geor</u> 1 2 3 4 5	42	F 342A	1.25
ot the <u>Betaining</u>	Rings		
Rina #	Groove Diamete	- Groove V	Vidth Model #
I	- · · · · · · · · · · · · · · · · · · ·	1,85 mm	
	2.297 in	0.056 i	ws 237
2		0.0001	n
3	37.50 mm	1.85 mm	
3 4	37.50 mm 37,50 mm	1.85 mm	DNS 40 DNS 40
3 4 5	37.50 mm 37,50 mm 2.924 in	1.85 mm 1.85 mm 0.039 m	DNS 40 DNS 40 V 3 300
3 4 5 6	37.50 mm 37,50 mm 2.924in 2.924in	1.85 mm 1.85 mm 0.039 in 0.039 in	DNS 40 DNS 40 V S 300 V S 300
3 4 5 6 7	37.50 mm 37,50 mm 2.924in 2,924in 47,05 mm	1.85 mm 1.85 mm 0.039 m 0.039 in 1.75 mm	DNS 40 DNS 40 V S 300 V S 300
3 4 5 6 7 8	37.50 mm 37,50 mm 2.924in 2.924in 47,05 mm 87,21 mm	1.85 mm 1.85 mm 0.039 in 0.039 in 1.75 mm 1.75 mm	DNS 40 DNS 40 V 3 300 V 5 300
3 4 5 6 7 8 9	37.50 mm 37,50 mm 2.924in 2.924in 47,05 mm 87,21 mm 4,188 in	1.85 mm 1.85 mm 0.039 in 0.039 in 1.75 mm 1.73 mm 0.068 in	DNS 40 DNS 40 VS 300 VS 300 ES 50 ES 90 WS 418
3 4 5 6 7 8	37.50 mm 37,50 mm 2.924in 2.924in 47,05 mm 87,21 mm	1.85 mm 1.85 mm 0.039 in 0.039 in 1.75 mm 1.75 mm	DNS 40 DNS 40 VS 300 VS 300 ES 50 ES 90

Bearings Static Rating(N) # Bore Width (mm Diameter (mm) 208MB 87000 40 23 22 2*0*8MB 23 87000 40 2 08M 23 87000 40 3 2236 MB 40 202000 4 50 NU1018M 108000 24 90 5 NU 1018M 24 108000 90 6 ATS bearing bearings provided company All are numbered 1-6 h to shaft input and being wit Note 6 being closes Closes output shaft to

3. Shaft Design

Table 3. Shaft Specification

Tuble et shuit specification				
	Intermediate Shaft	Input Shaft	Output Shaft	
Critical location (point labeled in V-M)	Keyway	Keyway	Keyway	
Diameter at critical location (in)	3	2.4	4.188	
Material type	AISI 4340 Annealed	AISI 1045 Cold Drawn	AISI 1045 Cold Drawn	
Safety factor	1.55	2.08	1.64	

Table 4. Intermediate Shaft Deformation

Point of Interest	XZ Plane XY Plane		Total
Left bearing slope	Left bearing slope 3.01e-66.76e-6		7.4e-6
Right bearing slope	2.23e-5	2.57e-5	3.4e-5
Left gear slope	3.66e-5	1.16e-4	1.21e-4
Right gear slope	5.35e-5	4.39e-5	6.92e-5

UNIVERSITY OF TEXAS AT SAN ANTONIO DEPARTMENT OF MECHANICAL ENGINEERING

Left gear deflection(in)	5.43e-5	1.46e-4	1.56e-4
Right gear deflection(in)	9.04e-7	5.42e-6	5.44e-6

Table 5. Input Shaft Deformation

Point of Interest	XZ Plane XY Plane		Total
Left bearing slope	earing slope 8.4e-7 1.99e-5		7.1e-6
Right bearing slope	8.51e-6	1.85e-5	7.1e-7
gear slope	3.85e-5	1.85e-4	1.5e-4
gear deflection(in)	1.1e-4	1.05e-4	3.39e-5

Table 6. Output Shaft Deformation

Point of Interest	XZ Plane	XY Plane	Total
Left bearing slope	6.51e-6	4.22e-6	4.25e-5
Right bearing slope	5.96e-6	2.2e-6	2.9e-4
gear slope	3.16e-6	6.76e-6	3.5e-4
gear deflection	2.49e-6	2.69e-5	5.27e-5

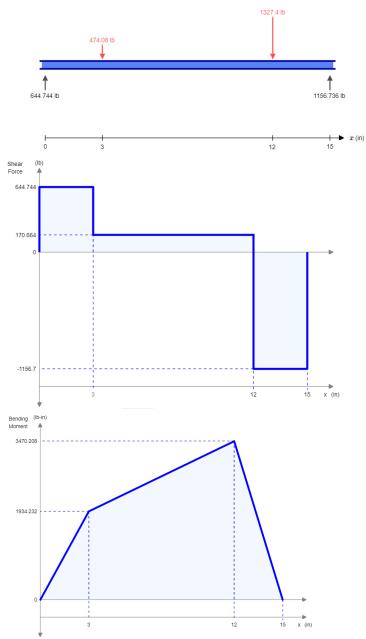
4. Bearing Design

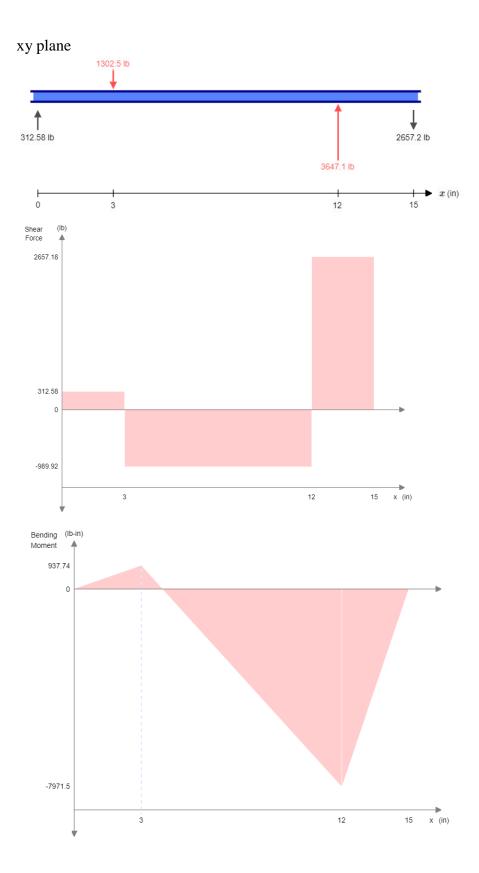
 Table 7. Bearing Specifications

	Radical force (lbf)	Catalog load rating (lbf)	Bearing type	Bearing Vender
Left bearing of intermediate shaft	716.5	6492.7	Cylinder Roller	AST Bearings
Right bearing of intermediate shaft	2898.1	26260	Cylinder Roller	AST Bearings
Left bearing of input shaft	693.1	8552.8	Cylinder Roller	AST Bearings
Right bearing of input shaft	693.1	8552.8	Cylinder Roller	AST Bearings
Left bearing of output shaft	1940.6	12912	Cylinder Roller	AST Bearings
Right bearing of output shaft	1940.6	12912	Cylinder Roller	AST Bearings

5. Supporting Information

5.1. Gear force and stress calculation for all gears

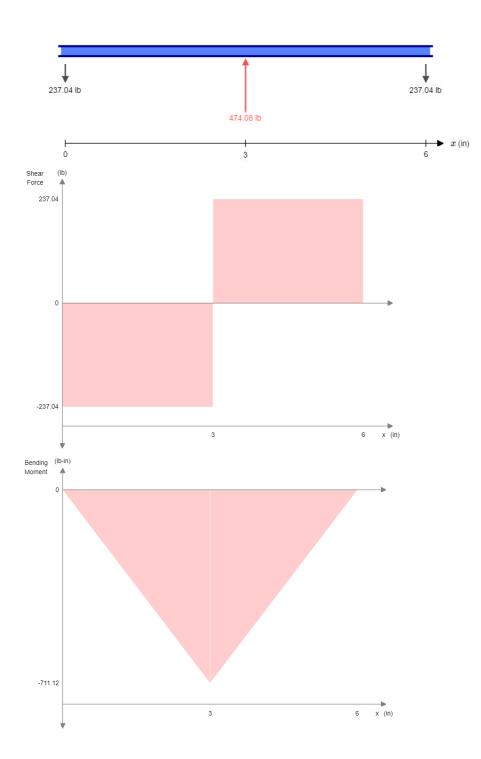

Please check attached MATLAB code.

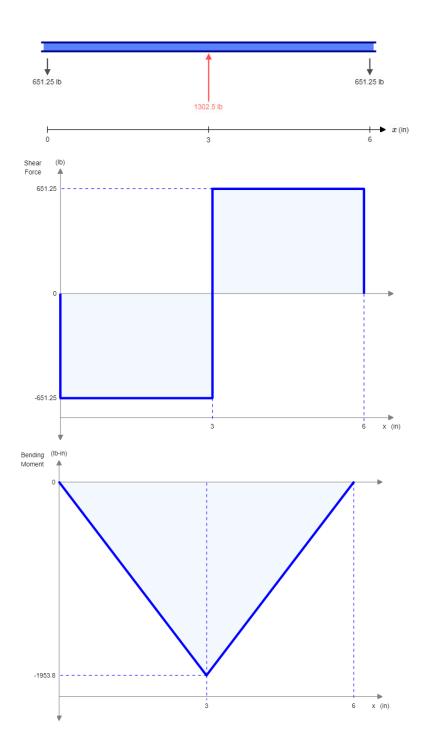

5.2. V-M diagram of all shafts

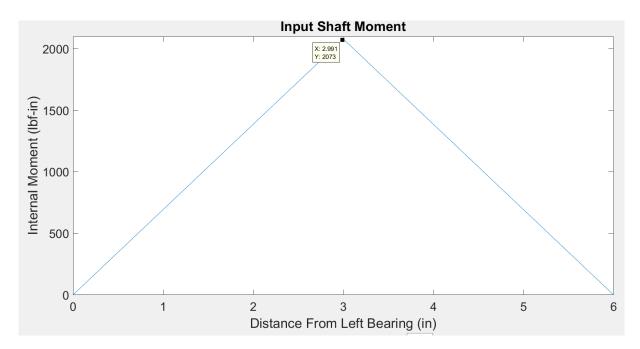
All combined Moment Diagrams shown in attached MATLAB code using piecewise functions.

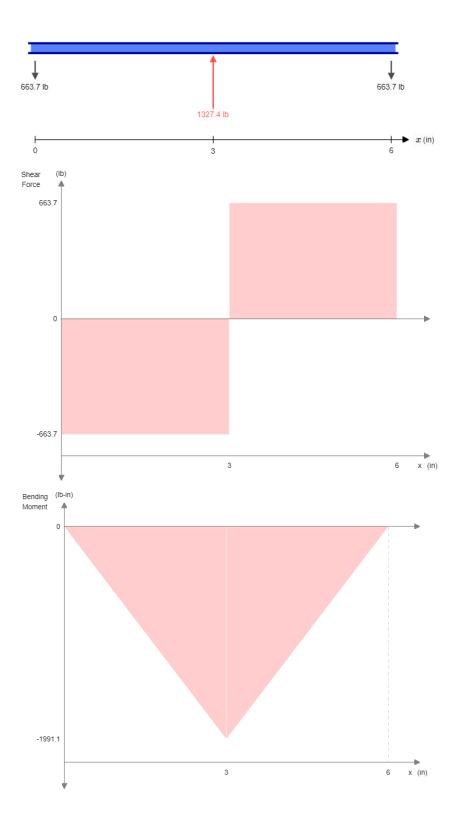

Intermediate Shaft

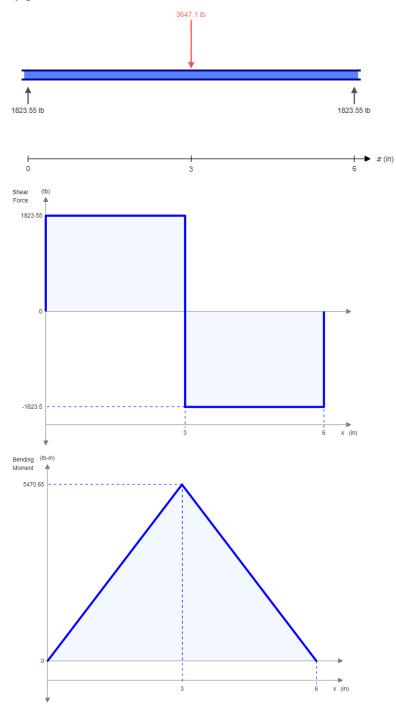
Yzplane

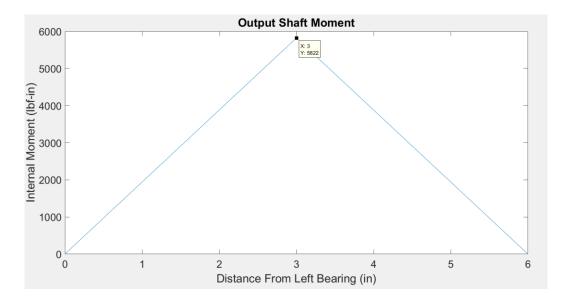



UNIVERSITY OF TEXAS AT SAN ANTONIO DEPARTMENT OF MECHANICAL ENGINEERING


Input Shaft yz plane


xy plane


UNIVERSITY OF TEXAS AT SAN ANTONIO DEPARTMENT OF MECHANICAL ENGINEERING



Output yz plane

xy plane

5.3. Shaft force and stress calculation for all shafts

Please refer to attached MATLAB code.

5.4. Describe the FEM analysis and results

This section is concentrated on the analysis of the shafts with the help of SOLIDWORKS software. The shafts are inter connected with bearings and gears, these are major components when analyzing a shaft under stress. The objective is to model and simulate the bending and torsional forces acting on each shaft and test for, Von Mises stress and displacement of material. The results obtained by FEM indicate that the stress and displacements of the shafts and bearings are within boundary limits before failure (0.01 inch and 0.0008-0.0012 rad, respectively).

Input Shaft

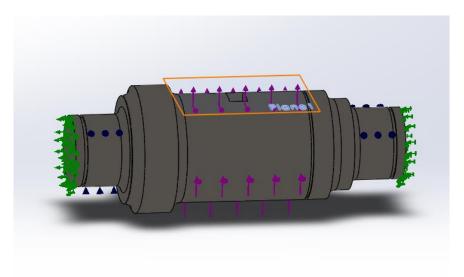


Figure 1: Force and boundary conditions on input shaft

FEM demonstrates the material displacement and the Von Mises stress distribution as shown below:

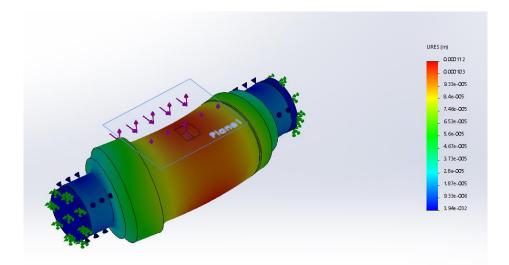


Figure 2: Resultant displacement of material in input shaft (inches)

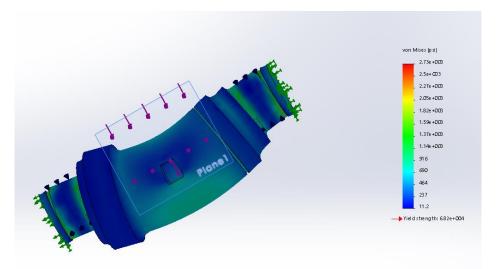


Figure 3: Von Mises stress (psi)

Displacement Plot:

Figure 4: Displacement plot (in)

From the plot above, the displacement (in) are shown to be under the limits of failure, indicating the shaft material and design are appropriate for the input shaft.

Intermediate Shaft

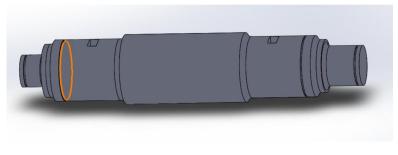


Figure 5: Output Shaft

UNIVERSITY OF TEXAS AT SAN ANTONIO DEPARTMENT OF MECHANICAL ENGINEERING

FEM:

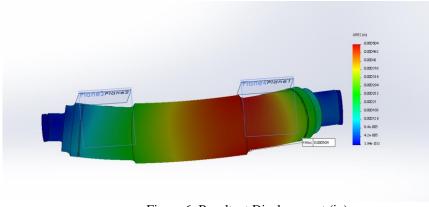
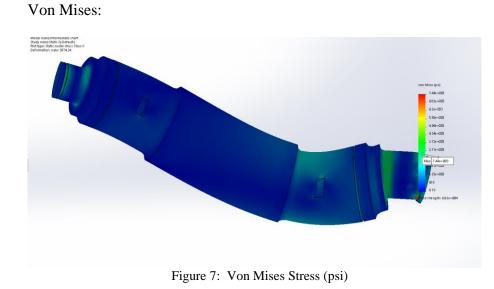



Figure 6: Resultant Displacement (in)

From the FEM analysis, the displacement (in) are shown to be under the limits of failure, indicating the shaft material and design are appropriate for the intermediate shaft.

Output Shaft

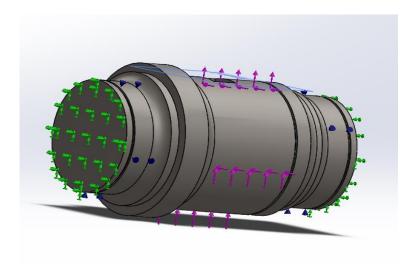


Figure 8: Force and boundary conditions on output shaft

FEM:

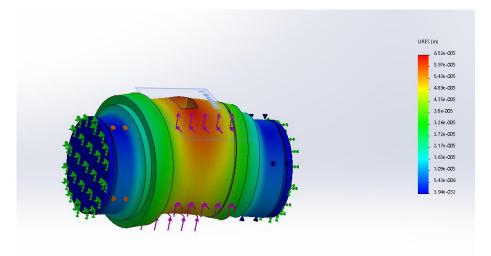
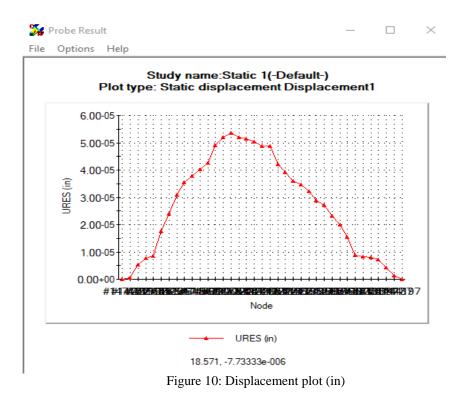



Figure 9: Resultant Displacement (in)

Displacement Plot:

From the plot above, the displacement (in) are shown to be under the limits of failure, indicating the shaft material and design are appropriate for the output shaft.

5.5. Stress calculation for Key design

Please refer to attached hand written calculations.

Input shaft key AISI 1045 CD steel shaft 62 hp n= 1300 rpm d=2.4 r=1,2 hg=1.5 $T = \frac{(63025)(62)}{1200} = 3005,807 \ 16f \cdot \ln 1200$ $F = \frac{T}{r} = \frac{3006}{12} = 2505 \, 16f$ Ssy= 0.577 (54)= 31,2 4ps1 $\frac{S_{s_{1}}}{h_{s}} = \frac{31.2 \times 10^{3}}{1.5} = 20800 = \frac{F}{+1}$ W= = h= = depth= 5 $2000 = \frac{2505}{.625L}$ $L = 0.1926in \longrightarrow 0.20in$ $\frac{S_V}{n_s} = \frac{F}{+L} = \frac{6500 L = 2505}{5500} = 0.3853 \rightarrow 0.40$

Input shaft key AISI 1045 CD steel shaft 62 hp n= 1300 rpm d=2.4 r=1,2 hg=1.5 $T = \frac{(63025)(62)}{1200} = 3005,807 \ 16f \cdot \ln 1200$ $F = \frac{T}{r} = \frac{3006}{12} = 2505 \, 16f$ Ssy= 0.577 (54)= 31,2 4ps1 $\frac{S_{sy}}{h_s} = \frac{31.2 \times 10^3}{1.5} = 20800 = \frac{F}{11}$ we & h= f depth= 5 $20800 = \frac{2505}{6251}$ L = 0.1926in - 0.20 in Sy = -6500 L= 2505 = 0.3853 - 0.40

Output shaft Key H=62hp d=4,2 n=155 r=2.1 $T = \frac{C3025(62)}{155} = 252(0) + in$ $F = \frac{25210}{2.1} = 12004,761914$ Sy= 68167 pri Ssy=0,577 (54)= 31. 158 6psi N= | h= | $\frac{S_{sy}}{n} = \frac{F}{+1} = \frac{31.158}{1.5} \frac{12.004.7619}{(1)L} L = 0.578 \rightarrow 0.6$ $\frac{5}{4} = \frac{1}{16} = \frac{54 \times 0^3}{15} = \frac{12004.7619}{16} = 1 = 0.6669 \rightarrow 0.7 \text{ in}$

5.6. Bearing force calculation for all bearings

Please refer to attached MATLAB code.

5.7. Engineering drawings for all shafts with detailed dimensions

Input Shaft

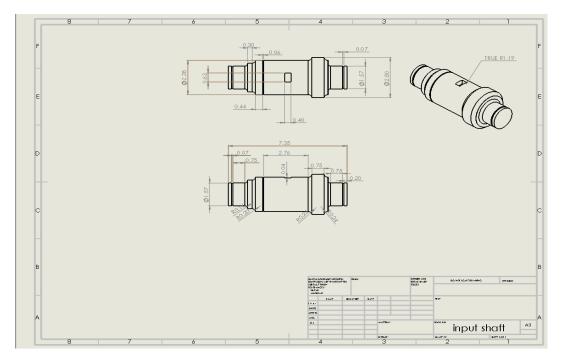


Figure 11: Input shaft Drawing

Intermediate Shaft

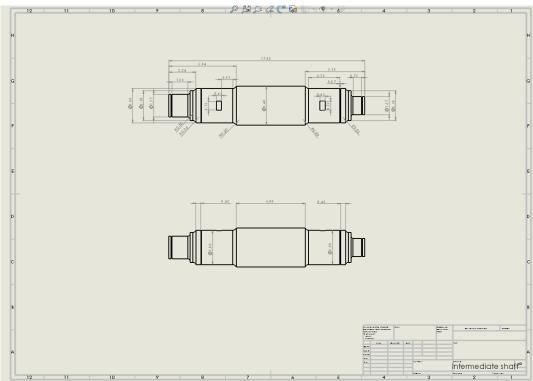


Figure 12: Intermediate shaft Drawing

Output Shaft

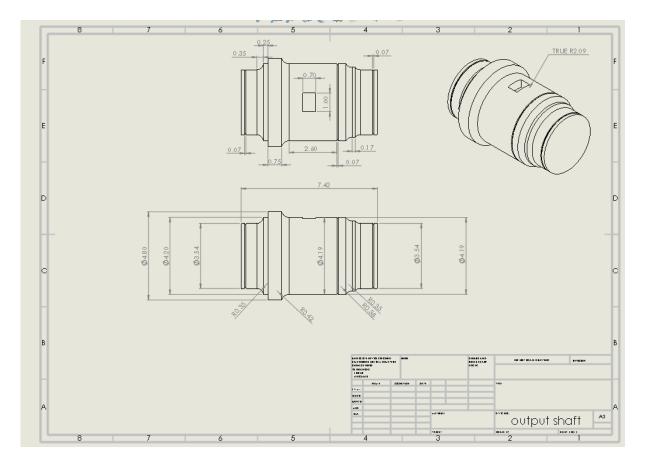


Figure 13: Output shaft Drawing

5.8. 3D CAD drawings of the assembled power transmission

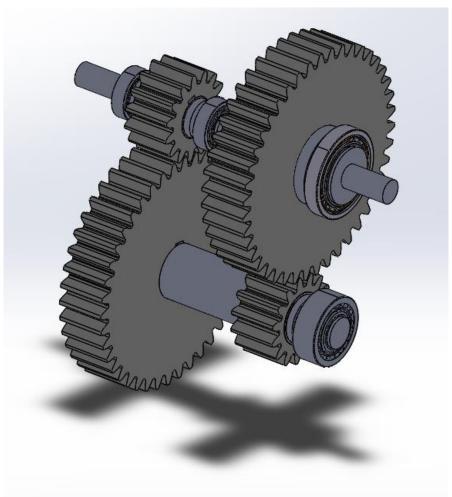


Figure 14: Assembled Power Transmission